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A method is proposed to detect the dynamical structure hiding behind complex chaotic series by comparing
prediction performance of trial functions. This method is valid even when the original system is contaminated
with noise or only a relatively short data series is recorded. Using this method, the dynamical structure of the
Gray-Scott model is detected from its rich spatiotemporal patterns. Finally, this method is successfully applied
to the experimental data of Chua’s circuit, which promises its potential of the application to realistic systems.
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I. INTRODUCTION

Many complex natural or artificial phenomena are often
governed by simple nonlinear laws �1�. Direct observation of
the intrinsic mechanism governing these phenomena cannot
be achieved in experiments. The time series of these systems
can usually be recorded experimentally. Therefore, recon-
structing the dynamical system �mathematic equations and
their parameters� from the measured complex superficies has
been an important topic of nonlinear science �2–12�. How-
ever, because of the properties of chaos, such as the irregular
behavior, ergodicity, and the sensitive dependence on initial
conditions and parameters, modeling chaos is often difficult.
Many previous studies focused on extracting the system pa-
rameters by using a so-called standard function or assuming
the dynamical structure is known �8–13�. Although, a stan-
dard function with numerous functional bases and appropri-
ate parameters could well approach the dynamical properties
of the original dynamical system. Most terms of the standard
function are actually not the intrinsic structure belonging to
the original system. These superfluous terms not only signifi-
cantly decrease the model performance �7,14�, but also pre-
vent researchers from gaining an insight into the dynamical
laws behind the complex chaotic phenomena. Therefore, the
detection of the intrinsic structure is of significance for im-
proving the global modeling. Moreover, the intrinsic struc-
ture itself contains important information of the original sys-
tem.

Some works have been done to select the model structure
�10,15–22� by using various methods such as zeroing-and-
refitting �15�, the model entropy �16�, the maximum descrip-
tion length �17,18�, proper orthogonal decomposition and er-
ror reduction ratio �19,20�, minimum description length
principle �22�, or taking into account the prior knowledge
�10� of nonlinear systems. However, when the chaotic data
series is too short or contains noise, these methods are often
ineffective, which limit their application in practice. To the
best of our knowledge, this problem has not been well re-
solved.

The one-step prediction can reflect the dynamical charac-
teristics of a short and noisy data series �23,24�. Barahona
and Poon found that a nonlinear polynomial can provide a
much better one-step prediction of chaotic series than a lin-
ear polynomial �24�. This is because the nonlinear polyno-
mial has the nonlinear terms of the original chaotic system
that the linear one lacks. Based on this finding, they pro-
posed a scheme to detect nonlinear dynamics from a short,
noisy time series by comparing the linear/nonlinear one-step
prediction error �24–26�.

In this study, we generalize this concept: For any two trial
functions �TF� �1�x� and �2�x�, if one TF can provide a
much better one-step ahead prediction of a data series than
another, the better one must have some intrinsic structures of
the original system, which are not taken in by another TF,
i.e., the structure discrepancy between the two TF contains
some intrinsic structures of the original system. Based on
this concept, we develop a scheme to recover the system
structure from a complex chaotic pattern.

In the following discussion, “intrinsic structure” means
the detected structure, which really belongs to the original
system; “superfluous structure” indicates the selected struc-
ture that actually does not exist in the original system;
“missed structure” implies the structure that does not be de-
tected but really belongs to the original system.

II. METHOD

Without loss of generality, let us consider the k-th variable
xk of the nonlinear system x�t+1�= f�x�t� ,x�t−1� , . . . ,
x�t−M�� with x�t�= �x1�t� ,x2�t� , . . . ,xk�t� , . . . ,xK�t��T,

xk�t + 1� = fk„x1�t�, . . . ,x1�t − M�,x2�t�, . . . ,

x2�t − M�,x3�t�, . . . ,xK�t − M�… + s�t� , �1�

where K is the number of variables and M is the memory of
the system. s�t� is a stochastic noise. In order to focus on the
structure detection, we assume that the vector x�t� has been
directly measured or reconstructed by using the methods of
time delay �27� or sequential derivatives �7–9�. A I-term TF
is constructed to approach the original system �Eq. �1��,
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yk�t + 1� = �
i=1

I

ci�i„y1�t�, . . . ,y1�t − M�,y2�t�, . . . ,

y2�t − M�,y3�t�, . . . ,yK�t − M�… , �2�

where �i and ci are the functional bases and their coeffi-
cients. Anyway, if the TF takes in numerous bases, it could
include all possibility of the original system’s structures.
However, only a few of these bases really belong to the
original system. Our purpose is to detect these intrinsic struc-
tures.

We define a truncated TF constructed with the first r-term
of the whole TF �Eq. �2�� as r-term TF. Substituting x�t�
�y�t� into this truncated TF, its coefficient ci can be esti-
mated using a least-squares method. With the known coeffi-
cients ci, the one-step predicted series can be calculated by
x̃k�t+1�=�i=1

r ci�i�x1�t� , . . . ,xK�t−M�� and the prediction er-
ror power is defined as ��r�2=�t=1

N �x̃k�t�−xk�t��2 /�t=1
N �xk�t�

− x̄k�t��2, where x̄k�t� is the time average value of xk�t� and N
is the data length. To quantify the difference of prediction
performance between the truncated r-term TF �i=1

r−1ci�i

+ci�i and �r−1�-term TF �i=1
r−1ci�i, we define a parameter

“information discrepancy” as

V�1� = − 1/N ,

V�r� = log���r − 1�/��r�� − 1/N �r � 1� , �3�

Clearly, V�r� and the information criterion C�r�=log ��r�
+r /N �24� can be linked to each other by C�r�=−V�1�
−V�2�− . . .−V�r�. Large V�r� indicates that the structure dif-
ference ��r� between r-term TF and �r−1�-term TF is highly
related with the original system. An iterative scheme is em-
ployed to detect the intrinsic structure of the original system
from V�r� and C�r� value.

For the first iterative step, the V�r� value of each basis in
the initial TF �Eq. �2�� is calculated. The basis are sorted by
the decrease in their V�r� value and a TF is obtained yk�t
+1�=�i=1

I ci
�1��i

�1��y1�t� , . . . ,yK�t−M��. It is noticeable that
the TF looks similar to the initial TF. However, the se-
quences of the functional basis in them are different. We add
a superscript �1� to indicate this point. For the j-th iterative
step, the V�r� value of bases in the TF obtained by the
�j−1�-th iteration is calculated. Sorting the basis �i

�j−1�

�i= j , . . . ,M� by the decrease in V�r�, the basis with the larg-
est V�r� is moved to the j-th of the TF yk�t+1�
=�i=1

I ci
�j��i

�j��y1�t� , . . . ,yK�t−M��. After I-step iteration, the
procedure is finished and the final TF can be obtained:

yk�t + 1� = �
i=1

I

ci
�I��i

�I��y1�t�, . . . ,yK�t − M�� , �4�

C�r� of the final TF is calculated. The first rmin functional
bases, which make C�rmin��C�r� for ∀r� �1, I�, are the de-
tected dynamical structure of the original system.

III. NUMERICAL EXAMPLES

To intuitively show how this structure detection scheme
works, a chaotic series x�n� is generated by the logistic

map x�n+1�=3.7x�n��1−x�n��+s�n�, where s�n� is a white
noise with a standard deviation 0.0058. A complex polyno-
mial with degrees 3 and 2 memories y�n+1�=c1+c2y�n�
+ c3y�n−1� + c4y�n�2 + c5y�n�y�n − 1� + c6y�n −1�2 + c7y�n�3

+c8y�n�2y�n−1�+c9y�n�y�n−1�2+c10y�n−1�3 is used as the
initial TF. Most terms �except for y�n�, y�n�2� of this TF are
superfluous. As shown in Fig. 1, C�r� sharply decrease in r
=4, i.e., the term y�n�2 �D in Fig. 1� has the largest V�r�. The
bases in TF are sorted by the decrease in their corresponding
V�r�, therefore, the term y�n�2 is moved to the first of the TF.
For the second iterative step, the criterion C�r� of the TF is
calculated again. The term y�n� �B in Fig. 1� correspond to
the largest V�r� of this TF. The second to the tenth terms of
this TF are rearranged by the decrease in their V�r� and the
term y�n� is moved to the second term. After ten iterations,
the final TF is obtained. C�2� is the minimum of C�r� of the
final TF and the first two bases −3.22y�n�2 and 3.29y�n� �D
and B in Fig. 1� are the detected intrinsic structures of the
original system.

When the chaotic series is generated by a system with
multiple memories and high degrees, the intrinsic structure
can still be detected from numerous basis candidates. Con-
sider the discrete map with memories M =7 and degrees D
=3,

x�n� = 1 + 0.2x�n − 1� + 0.3x�n − 3� + 0.1x�n − 7�

− 0.6x�n − 1�2 − 0.2x�n − 1�x�n − 7� − 0.4x�n − 4�2

− 0.3x�n − 2�x�n − 5� − 0.1x�n − 2�x�n − 4�x�n − 5�

− 0.1x�n − 4�x�n − 6�x�n − 7� − 0.2x�n − 7�3 + s�n� ,

where s�n� represents a white noise disturbance. This system
has 11 terms and its trajectory evolving in an attractor com-
prised of fractals in three disconnected domains and visits
each of them in a periodic manner �Fig. 2�a� where s�n�
�0�. This periodicity was thought to make the nonlinear
analysis difficult �24�. A data series with 1000 points gener-
ated by this system is used for the structure detection. A TF
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FIG. 1. �Color online�. Detecting the intrinsic structure from the
chaotic series generated by the logistic map. The information crite-
ria C�r� of the TFs before iteration �square black scatters�, after
one-step �circle red scatters� and 10-step iteration �triangle blue
scatters� are calculated and plotted with the same scale but an off-
set. The symbols A ,B ,C ,D , . . . ,J represent the TF’s ten bases
1 ,y�n� ,y�n−1� ,y�n�2 , . . . ,y�n−1�3.
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with numerous bases y�n�=�i=1
I ci�i, where �i� ��m=1

M y�n
−m�dm	 with �m=1

M dm=0,1 , . . . ,D, is used to approach the
original system. For M =8 and D=3, the total term number
of this TF is I= �M +D� ! /M !D ! =165. Actually, only 11 el-
ements in this huge basis aggregate are necessary. They are
the 1st, 2nd, 4th, 8th, 10th, 16th, 21st, 31st, 96th, 141st, and 162nd

bases of the initial TF �the empty scatters in Figs. 2�c� and
2�d��. The proposed scheme progressively rearranges those
intrinsic terms to the front of TF. Finally, C�11� is the mini-
mum of C�r� �1�r�165� and the first 11 terms are just the
11 intrinsic terms belonging to the original system �Fig.
2�c��. The first 11 bases are 1.00, −0.2y�n−7�3, 0.1y�n−7�,
−0.1y�n−4�y�n−6�y�n−7�, −0.3y�n−2�y�n−5�, −0.2y�n
−1�y�n−7�, −0.1y�n−2�y�n−4�y�n−5�, −0.6y�n−1�2,
0.3y�n−3�, 0.2y�n−1�, and −0.4y�n−4�2 in sequence.

Moreover, even when the system is seriously disturbed by
a white noise with a standard deviation 0.0464 �Fig. 2�b��,
the proposed detection scheme is still available. As shown in
Fig. 2�d�, the detected bases are

c1,

c10y�n − 1�2,

c4y�n − 3� ,

c21y�n − 2�y�n − 5� ,

c31y�n − 4�2,

c162y�n − 7�3,

c16y�n − 1�y�n − 7� ,

c2y�n − 1� ,

c141y�n − 4�y�n − 6�y�n − 7� ,

c8y�n − 7� ,

c96y�n − 2�y�n − 4�y�n − 5�

�c1=1.003, c10=−0.601, c4=0.303, c21=−0.306, c31
=−0.394, c162=−0.199, c16=−0.196, c2=0.191, c141
=−0.102, c8=0.096, c96=−0.086� in sequence.

We have applied the proposed scheme to detecting the
continuous equation from complex spatiotemporal pattern
governed by partial differential equations �PDEs�. The Gray-
Scott model �28� has been paid much attention �29� because
of its rich spatiotemporal behaviors �1�. The Gray-Scott
equations in dimensionless units are

�u/�t = Du�
2u − uv2 + F�1 − u� , �5�

�v/�t = Dv�
2v + uv2 − �F + k�V , �6�

where Du=2.0�10−5 and Dv=1.0�10−5 are the dimension-
less diffusion coefficients, F is the dimensionless feed rate,
and k is the dimensionless rate constant of the second reac-
tion. F and k are control parameters. Equations �5� and �6�
with a 200�200 spatial lattice and periodic boundary con-
dition are integrated by using a finite-difference algorithm
with mesh space h=0.01. The initial homogeneous �u
=1, v=0� status is perturbed by a localized square pulse of
size 20�20. After 200 000 steps ��t=1.0� integration, the
transients die out and the data of 4 000 time steps is used for
the detection.

Assuming that the system outputs around the pattern cen-
ter �x=0, y=0� �y1�t�=u�x ,y , t�, y2�t�=u�x ,y−h , t�, y3�t�
=u�x−h ,y , t�, y4�t�=u�x ,y+h , t�, y5�t�=u�x+h ,y , t�, and
y6�t�=v�x ,y , t�� are recorded, the initial TF is set as y1�t
+�t�=�i=1

I ci�i with bases �i� ��k=1
6 yk

dk�t�	 and �k=1
6 dk

=0,1 ,2 ,3, where �1=1 �2=y1, �3=y2, �4=y3, �5=y4, �6
=y5, �7=y6, . . ., �49=y1y6

2 . . .�84=y6
3. This TF has totally 84

terms. As shown in Fig. 3, after the iterative detection pro-
cedure is finished, C�7� is the minimum of the C�r� curve
and the first seven terms are sequentially 0.016, 0.184y1,
0.200y4, −1.000y1y6

2, 0.200y3, 0.200y5, and 0.200y2.
Discretizing Eq. �5� with a finite-difference scheme, it
has y1�t+�t�=F�t+ �1−F�t−4Du�t /h2�y1+Du�t /h2�y2
+y4+y3+y5�−y1y6

2. Comparing the first seven bases of the
final TF with the discretized Gray-Scott model, it can be
found that these bases are just the terms of the discretized
Eq. �5�. In other words, the dynamical structure described by
the partial differential Eq. �5� is successfully detected.

The Gray-Scott model has a rich variety of spatiotemporal
patterns by making small changes in F and k �1� as shown in

FIG. 2. �Color online�. Detecting the intrinsic structure of a
discrete map with multiple variables and high degrees. 1000 points
are used for the structure detection. �a�–�b� the phase trajectories.
�c�–�d� The information criteria C�r� of the initial TF �blue squares�,
the final TF �downward-pointing blue triangles�, and the TFs after
one-step �red circles� and two-step iteration �green triangles� are
plotted with the same scale but an offset, where the empty scatters
represents those intrinsic bases. The left ��a� and �c�� and right ��b�
and �d�� columns represent the situations without noise and with
noise, respectively.
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Figs. 4�a�–4�d�. Applying the proposed scheme to these spa-
tiotemporal signals, the common intrinsic structure �1, y1, y2,
y3, y4, y5, and y1y6

2�, especially the high-order term y1y6
2,

governing these patterns can always be detected by the pro-
posed scheme, as shown in Fig. 4�e�. On rare occurrences, a
few detected terms actually do not belong to the original
system �superfluous terms, empty circle scatters in Fig. 4�,
for example, the terms y1

2 and y5y6
2 for F=0.010 and the term

y5y6
2 for F=0.011. The mistaken detection could be because

these terms are highly correlated with some intrinsic terms.
This problem can be solved by increasing the number of the
data used for the detection. As shown in Fig. 4�f�, when the
data length is less than 1 000 points, many superfluous terms
are wrongly selected, moreover, some intrinsic terms of the
original system sometimes could be missed out �square red
scatters�. When the data length is increased to 1000
5000
points, all intrinsic terms of the original system can always
be selected but sometimes a few detected terms are superflu-
ous. When enough points are used for the detection ��5000
points�, all intrinsic terms are detected and no superfluous
terms are mistakenly involved.

IV. EXPERIMENT

In the last example, we apply the proposed method to
experimental data, which was recorded from a Chua’s circuit
experimental setup �12�. The dynamical behavior of this cir-
cuit can be described by the following differential equations:

C1V̇C1 = G � �VC1 − VC2� − g�VC1� , �7�

C2V̇C2 = G � �VC1 − VC2� + IL, �8�

LİL = − VC2 − R0IL, �9�

where g�x� is a piecewise-linear function

g�x� = �m1x + b1 �x � Bp1�
m12x �Bp1 � x � Bp2�
m2x + b2 Bp2 � x

� , �10�

with b1= �m12−m1�BP1 and b2= �m12−m1�BP2. The circuit pa-
rameters have been given in Table I. The time series of VC1
and VC2 of the Chua’s circuit were recorded through the os-
cilloscope �Tektronix TDS-460� with the sampling frequency

FIG. 3. �Color online�. Revealing the simple dynamical struc-
ture from complex spatiotemporal pattern governed by partial dif-
ferential equations �the Gray-Scott model with F=0.016 and K
=0.05�. The top left, top right, and bottom left figures illustrate the
space x−y, time-y, and x time plots, respectively. The bottom right
figure plots the information criteria C�r� as a function of term num-
ber r, where the definitions of scatters are the same as those in Fig.
2.

FIG. 4. �Color online�. Detection of the common dynamical
structure behind various spatiotemporal pattern of the Gray-Scott
model controlled by F. �a�–�d� Four typical patterns of the Gray-
Scott model with K=0.05. �e� Structure detection. �f� The influence
of data number. Here, the vertical axis of �e�–�f� represents the
index of the basis in the initial TF. When a basis of the initial TF is
finally selected by the proposed scheme, a circle scatter will be
labeled on its corresponding position. The solid circle black scatters
indicate that this detected basis really exists in the original system
�intrinsic term�, whereas the empty circle blue scatters indicate that
the detected basis actually does not belong to the original system
�superfluous term�. If a basis really belongs to the original system
but it is not detected by the proposed scheme �missed term�, a
square red scatter is labeled on its corresponding position.

TABLE I. Parameter values of Chua circuit.

C1 5.13 nF Bp1 −1.59 V

C2 51.1 nF Bp2 1.59 V

G 0.675 mS m1 −0.512 mS

L 9.48 mH m2 −0.511 mS

R0 3.46 	 m12 −0.835 mS
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0.5 MHz �the sampling interval �t=2 
s�. Figure 5�a� pre-
sents the VC1 vs VC2 phase portrait of the experimentally
measured circuit system. In this system, the function g�x� in
Eq. �7� is nonlinear, which causes the chaotic behavior of the
Chua’s circuit.

Although 10 000 points were recorded in our experiments
�the solid dots in Fig. 5�a��, only a short phase orbit with
1 000 points is used for the structure detection �the solid red
line in Fig. 5�a��. The fluctuations in the orbits are due to the
noise in the practical circuit system. A TF with numerous

bases VC1�t+�t�=�i=1
I ci�i, where �i� �VC1

d1 �t��VC2
d2 �t�	 with

d1+d2=0 ,1 , . . .11, is used to approach the original system.
In this TF, there are a total of 78 bases. After the iterative
detection procedure is finished, C�9� is the minimum of the
C�r� curve and the first nine terms are sequentially �1=1,
�2=VC1, �3=VC2, �7=VC1

3 , �16=VC1
5 , �29=VC1

7 , �4=VC1
2 ,

�67=VC1
11 , and �46=VC1

9 as shown in Fig. 5�b�
Observing Eq. �7�, it can be found that Eq. �7� explicitly

has the terms VC1 and VC2. Moreover, for m1
m2 and Bp1

Bp2, The piecewise-linear function g�x� is an odd function
�see Eq. �10��, which can be approached by the polynomial
c1x+c3x3+c5x5+ ¯+c2i−1x�2i−1�+ . . . �i=1,2 ,3 , . . .�. In other
words, the terms VC1

d1 with odd powers are the intrinsic terms
of the Chua’s circuit �Eq. �7��, but the terms VC1

d1 with even
powers are superfluous terms. Therefore, the proposed
scheme has successfully detected all intrinsic terms �VC1,
VC2, VC1

3 , VC1
5 , VC1

7 , VC1
9 , and VC1

11 � and excluded numerous
superfluous terms. In addition, the term VC1

2 and the constant
term detected by the proposed scheme might be ascribed to
the noise effects in the practical circuit system.

Using the detected basis, the nonlinear structure of Chua’s
circuit can be well approached, as shown in Fig. 5�c�. The
sum of the nonlinear terms

�fnon�VC1� = − 1.854 � 10−3 − 1.811 � 10−2VC1
3

+ 1.449 � 10−3VC1
5 − 6.254 � 10−5VC1

7

+ 6.624 � 10−4VC1
2 − 1.170 � 10−8VC1

11

+ 1.360 � 10−6VC1
9 �

detected by the proposed method is plotted in this figure with
a dashed red line. The sum of the nonlinear terms

�fnon�VC1� = c1 + c3VC1
0 VC2

1 + c4VC1
2 VC2

0

+ c5VC1
1 VC2

1 + ¯ + c78VC1
0 VC2

11

with VC2=0� of the initial TF is also plotted in the same
figure with a dotted blue line. In this figure, the linear term
c2VC1 is eliminated. This is because the linear term is so
large that it could make the nonlinear characteristics invis-
ible. For the sake of comparison, the nonlinear component
fnon�VC1�= f�VC1�−1.608VC1 directly deduced from Eq. �7� is
also plotted in Fig. 5�c� with a solid black line, where
f�VC1�= �1+G�t /C1�VC1−g�VC1� is obtained by discretizing
Eq. �7� with a finite-difference scheme. The term 1.608VC1 is
the linear term of the polynomial c1+c2VC1+c2VC1

2 +c3VC1
3

+ . . ., which can best fit the function f�VC1�= �1
+G�t /C1�VC1−g�VC1�. It can be seen that the final TF can
approach the real Chua’s circuit system very well.

In a previous study, the structure selection method based
on error reduction ratio was also applied to Chua’s system
�20�. It was found that the accurate estimation of polynomial
models from the noise data is very difficult �20�. In this
study, the successful application to experimental data with
noise shows the advantage of the proposed method. In addi-
tion, the dynamical structure of the Chua’s circuit is not
polynomial nature, but a precise-linear function. The polyno-
mial detected by the proposed method can still closely ap-
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FIG. 5. �Color online�. Detection of dynamical structure of a
Chua’s circuit. �a� the VC1 vs VC2 phase portrait of the Chua’s
circuit, where the solid �red� orbits represents the 1,000 points used
for the structure detection. �b� The information criteria C�r� of the
initial TF �square black scatters�, the final TF �circle blue scatters�,
where the empty scatters represents those intrinsic bases. �c� the
detected nonlinear structure of Chua’s circuit, where the dashed red
line represents the sum of the detected nonlinear terms, the dotted
blue line represents the sum of the nonlinear terms of the initial TF,
and the solid black line represents the nonlinear component directly
deduced from Eq. �7�.

DETECTION OF DYNAMICAL STRUCTURE FROM SHORT … PHYSICAL REVIEW E 81, 046209 �2010�

046209-5



proach its structure. These results could validate the perfor-
mance of the proposed method under a complex and realistic
situation.

V. CONCLUSION

In summary, a scheme is proposed to detect the global
structures �mathematic equations� of nonlinear systems from
chaotic series. The successful detections of the logistic map
and Gray-Scott model validate the proposed scheme. Espe-
cially, numerical simulations show that this method is robust
to the data length and noise. This advantage could broaden
the application of the proposed scheme to realistic systems.
Finally, the proposed scheme is utilized to detect the dynami-
cal structure of a Chua’s circuit, which confirms its capacity
for real systems.

The polynomial is one kind of typical nonlinear structure,
which frequently exists in the dynamical structure of the
nonlinear system. Moreover, the other kinds of functions can
be approximated by the polynomial. If it is not known what
kinds of terms exist in the original system, the polynomial
can be used to approximate the nonlinear structure in these
systems. As we have done in the study of Chua’s circuit, the
nonlinear structure described by the piecewise-linear func-
tion g�x� is approximated by the polynomial. Therefore, we
chose the TFs only containing polynomial terms in this
study. If the TFs consist of other bases, the validation of the
proposed method will be examined in the future works.
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